Published in

Oxford University Press (OUP), Journal of Experimental Botany, 383(54), p. 657-661

DOI: 10.1093/jxb/erg072

Links

Tools

Export citation

Search in Google Scholar

Potassium activities in cell compartments of salt-grown barley leaves

Journal article published in 2003 by Aj Miller ORCID, Ta A. Cuin, Sa Laurie, R. Leigh, A. L. Et
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Triple-barrelled microelectrodes measuring K+ activity (aK), pH and membrane potential were used to make quantitative measurements of vacuolar and cytosolic aK in epidermal and mesophyll cells of barley plants grown in nutrient solution with 0 or 200 mM added NaCl. Measurements of aK were assigned to the cytosol or vacuole based on the pH measured. In epidermal cells, the salt treatment decreased aK in the vacuole from 224 to 47 mM and in the cytosol from 68 to 15 mM. In contrast, the equivalent changes in the mesophyll were from 235 to 150 mM (vacuole) and 79 to 64 mM (cytosol). Thus mechanisms exist to ameliorate the effects of salt on aK in compartments of mesophyll cells, presumably to minimize any deleterious consequences for photosynthesis. Thermodynamic calculations showed that K+ is actively transported into the vacuole of both epidermal and mesophyll cells of salinized and nonsalinized plants. Comparison of the values of aK in K+-replete, non-salinized leaf cells with those previously measured in root cells of plants grown under comparable conditions indicates that cytosolic aK is similar in cells of both organs, but vacuolar aK in leaf cells is approximately twice that in roots. This suggests differences in the regulation of vacuolar aK, but not cytosolic aK, in leaf and root cells. ; Tracey Ann Cuin, Anthony J. Miller, Sophie A. Laurie and Roger A. Leigh