Published in

American Institute of Physics, Applied Physics Letters, 13(120), p. 131102, 2022

DOI: 10.1063/5.0081817

Links

Tools

Export citation

Search in Google Scholar

Long-wave infrared super-resolution wide-field microscopy using sum-frequency generation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Super-resolution microscopy in the visible is an established powerful tool in various disciplines. In the long-wave infrared (LWIR) spectral range, however, no comparable schemes have been demonstrated to date. In this work, we experimentally demonstrate super-resolution microscopy in the LWIR range ([Formula: see text]m) using IR-visible sum-frequency generation. We operate our microscope in a wide-field scheme and image localized surface phonon polaritons in 4H-SiC nanostructures as a proof-of-concept. With this technique, we demonstrate an enhanced spatial resolution of [Formula: see text], enabling to resolve the polariton resonances in individual sub-diffractional nanostructures with sub-wavelength spacing. Furthermore, we show that this resolution allows us to differentiate between spatial patterns associated with different polariton modes within individual nanostructures.