Published in

American Association of Immunologists, The Journal of Immunology, 8(208), p. 2019-2028, 2022

DOI: 10.4049/jimmunol.2100997

Links

Tools

Export citation

Search in Google Scholar

Lung Imaging Reveals Stroke-Induced Impairment in Pulmonary Intravascular Neutrophil Function, a Response Exacerbated with Aging

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract In stroke patients, infection is a significant contributor to morbidity and mortality. Moreover, older stroke patients show an increased risk of developing stroke-associated infection, although the mechanisms underlying this increased susceptibility to infection are unknown. In this study, using an experimental mouse model of ischemic stroke, we showed that older (12–15 mo of age) mice had elevated lung bacterial infection and inflammatory damage after stroke when compared with young (8–10 wk of age) counterparts, despite undergoing the same degree of brain injury. Intravital microscopy of the lung microvasculature revealed that in younger mice, stroke promoted neutrophil arrest in pulmonary microvessels, but this response was not seen in older poststroke mice. In addition, bacterial phagocytosis by neutrophils in the lung microvasculature was reduced by both aging and stroke, such that neutrophils in aged poststroke mice showed the greatest impairment in this function. Analysis of neutrophil migration in vitro and in the cremaster muscle demonstrated that stroke alone did not negatively impact neutrophil migration, but that the combination of increased age and stroke led to reduced effectiveness of neutrophil chemotaxis. Transcriptomic analysis of pulmonary neutrophils using RNA sequencing identified 79 genes that were selectively altered in the context of combined aging and stroke, and they were associated with pathways that control neutrophil chemotaxis. Taken together, the findings of this study show that stroke in older animals results in worsening of neutrophil antibacterial responses and changes in neutrophil gene expression that have the potential to underpin elevated risk of stroke-associated infection in the context of increased age.