Published in

American Astronomical Society, Astrophysical Journal, 2(928), p. 126, 2022

DOI: 10.3847/1538-4357/ac4e18

Links

Tools

Export citation

Search in Google Scholar

LEGA-C: Analysis of Dynamical Masses from Ionized Gas and Stellar Kinematics at z ∼ 0.8

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract We compare dynamical mass estimates based on spatially extended stellar and ionized gas kinematics (M dyn,* and M dyn,eml, respectively) of 157 star-forming galaxies at 0.6 ≤ z < 1. Compared with z ∼ 0, these galaxies have enhanced star formation rates, with stellar feedback likely affecting the dynamics of the gas. We use LEGA-C DR3, the highest-redshift data set that provides sufficiently deep measurements of a K s -band limited sample. For M dyn,*, we use Jeans anisotropic multi-Gaussian expansion models. For M dyn,eml, we first fit a custom model of a rotating exponential disk with uniform dispersion, whose light is projected through a slit and corrected for beam smearing. We then apply an asymmetric drift correction based on assumptions common in the literature to the fitted kinematic components to obtain the circular velocity, assuming hydrostatic equilibrium. Within the half-light radius, M dyn,eml is on average lower than M dyn,*, with a mean offset of –0.15 ± 0.016 dex and galaxy-to-galaxy scatter of 0.19 dex, reflecting the combined random uncertainty. While data of higher spatial resolution are needed to understand this small offset, it supports the assumption that the galaxy-wide ionized gas kinematics do not predominantly originate from disruptive events such as star formation–driven outflows. However, a similar agreement can be obtained without modeling from the integrated emission line dispersions for axis ratios q < 0.8. This suggests that our current understanding of gas kinematics is not sufficient to efficiently apply asymmetric drift corrections to improve dynamical mass estimates compared with observations lacking the signal-to-noise ratio required for spatially extended dynamics.