Published in

American Institute of Physics, Applied Physics Letters, 13(120), p. 132105, 2022

DOI: 10.1063/5.0087623

Links

Tools

Export citation

Search in Google Scholar

Elevated temperature spectroscopic ellipsometry analysis of the dielectric function, exciton, band-to-band transition, and high-frequency dielectric constant properties for single-crystal ZnGa<sub>2</sub>O<sub>4</sub>

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

We report the elevated temperature (22 °C [Formula: see text] T [Formula: see text] 600 °C) dielectric function properties of melt grown single crystal ZnGa2O4 using a spectroscopic ellipsometry approach. A temperature dependent Cauchy dispersion analysis was applied across the transparent spectrum to determine the high-frequency index of refraction yielding a temperature dependent slope of 3.885(2) × 10−5 K−1. A model dielectric function critical point analysis was applied to examine the dielectric function and critical point transitions for each temperature. The lowest energy M0-type critical point associated with the direct bandgap transition in ZnGa2O4 is shown to red-shift linearly as the temperature is increased with a subsequent slope of −0.72(4) meV K−1. Furthermore, increasing the temperature results in a reduction of the excitonic amplitude and increase in the exciton broadening akin to exciton evaporation and lifetime shortening. This matches current theoretical understanding of excitonic behavior and critically provides justification for an anharmonic broadened Lorentz oscillator to be applied for model analysis of excitonic contributions.