Published in

MDPI, Journal of Personalized Medicine, 4(12), p. 575, 2022

DOI: 10.3390/jpm12040575

Links

Tools

Export citation

Search in Google Scholar

Effect of Different Intracanal Medicaments on the Viability and Survival of Dental Pulp Stem Cells

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background: Stem cells play an important role in the success of regenerative endodontic procedures. They are affected by the presence of medicaments that are used before the induction of bleeding or the creation of a scaffold for endodontic regeneration. This study examines the effects of different intracanal medicaments on the viability and survival of dental pulp stem cells at different doses and over different exposure times. Methods: Dental pulp stem cells were cultured from healthy third molar teeth using the long-term explant culture method and characterized using flow cytometry and exposed to different concentrations of calcium hydroxide, doxycycline, potassium iodide, triamcinolone, and glutaraldehyde, each ranging from 0 (control) to 1000 µg/mL. Exposure times were 6, 24, and 48 h. Cell viability was measured using the MTT assay, and apoptosis was measured using the Annexin V-binding assay. Results: All medicaments significantly reduced cell viability at different concentrations over different exposure times. Calcium hydroxide and triamcinolone favored cell viability at higher concentrations during all exposure times compared to other medicaments. The apoptosis assay showed a significant increase in cell death on exposure to doxycycline, potassium iodide, and glutaraldehyde. Conclusion: The intracanal medicaments examined in our study affected the viability of dental pulp stem cells in a time and dose-dependent manner. They also adversely affected the survival of dental pulp stem cells. Further studies are needed to better understand the effect of prolonged exposure to medicaments according to clinical protocols and their effect on the stemness of dental pulp stem cells.