Dissemin is shutting down on January 1st, 2025

Published in

Springer, International Ophthalmology, 9(42), p. 2773-2784, 2022

DOI: 10.1007/s10792-022-02268-8

Links

Tools

Export citation

Search in Google Scholar

The short-term effects of wearing swimming goggles on corneal biomechanics

Journal article published in 2022 by Raimundo Jiménez, Rubén Molina ORCID, Jesús Vera ORCID, Beatriz Redondo
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Purpose This study aimed to assess the impact of wearing swimming goggles (SG) on corneal biomechanics. Methods Corneal deformation response, central corneal thickness (CCT), intraocular pressure (IOP) and biomechanically corrected intraocular pressure (bIOP) were measured with the Corvis system (Oculus Optikgeräte GmbH, Wetzlar, Germany) in thirty-one healthy young adults while wearing a drilled SG. All measurements were obtained before, at 30 s, 2 min, 3.5 min and 5 min of wearing SG, just after SG removal and after 2 min of SG removal. Results The corneal biomechanics is sensitive to SG wear, observing lower corneal deformability during SG use. Specifically, wearing SG caused an increase in the time and length of the first applanation and radius curvature at the highest concavity, as well as a decrease and in the velocity of the first applanation and time and deformation amplitude of the second applanation (p < 0.001 in all cases). After SG removal, corneal biomechanical parameters showed a rebound-effect, obtaining a higher corneal deformability in comparison with baseline reading (p-corrected < 0.05 in all cases). Additionally, IOP and bIOP significantly increased while wearing SG (p < 0.001 in both cases), whereas CCT remained stable (p = 0.850). Conclusions Wearing SG modifies the biomechanical properties of the cornea, with reduced corneal deformability during SG wear. The outcomes of this study should be taken into consideration when making clinical decisions in subjects at high risk of developing corneal ectasias or glaucoma, as well as in the post-surgical management of these ocular conditions.