Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Remote Sensing, 7(14), p. 1731, 2022

DOI: 10.3390/rs14071731

Links

Tools

Export citation

Search in Google Scholar

New Normalized Difference Reflectance Indices for Estimation of Soil Drought Influence on Pea and Wheat

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Soil drought is an important problem in plant cultivation. Remote sensing using reflectance indices (RIs) can detect early changes in plants caused by soil drought. The development of new RIs which are sensitive to these changes is an important applied task. Previously, we revealed 46 normalized difference RIs based on a spectral region of visible light which were sensitive to the action of a short-term water shortage on pea plants under controlled conditions (Remote Sens. 2021, 13, 962). In the current work, we tested the efficiency of these RIs for revealing changes in pea and wheat plants induced by the soil drought under the conditions of both a vegetation room and open ground. RI (613, 605) and RI (670, 432) based on 613 and 605 nm wavelengths and on 670 and 432 nm wavelengths, respectively, were effective for revealing the action of the soil drought on investigated objects. Particularly, RI (613, 605) and RI (670, 432) which were measured in plant canopy, were significantly increased by the strong soil drought. The correlations between these indices and relative water content in plants were strong. Revealed effects were observed in both pea and wheat plants, at the plant cultivation under controlled and open-ground conditions, and using different angles of measurement. Thus, RI (613, 605) and RI (670, 432) seem to be effective tools for the remote sensing of plant changes under soil drought.