Published in

MDPI, Electronics, 7(11), p. 1131, 2022

DOI: 10.3390/electronics11071131

Links

Tools

Export citation

Search in Google Scholar

An Efficient Crypto Processor Architecture for Side-Channel Resistant Binary Huff Curves on FPGA

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

This article presents an efficient crypto processor architecture for point multiplication acceleration of side-channel secured Binary Huff Curves (BHC) on FPGA (field-programmable gate array) over GF(2233). We have implemented six finite field polynomial multiplication architectures, i.e., (1) schoolbook, (2) hybrid Karatsuba, (3) 2-way-karatsuba, (4) 3-way-toom-cook, (5) 4-way-toom-cook and (6) digit-parallel-least-significant. For performance evaluation, each implemented polynomial multiplier is integrated with the proposed BHC architecture. Verilog HDL is used for the implementation of all the polynomial multipliers. Moreover, the Xilinx ISE design suite tool is employed as an underlying simulation platform. The implementation results are presented on Xilinx Virtex-6 FPGA devices. The achieved results show that the integration of a hybrid Karatsuba multiplier with the proposed BHC architecture results in lower hardware resources. Similarly, the use of a least-significant-digit-parallel multiplier in the proposed design results in high-speed (in terms of both clock frequency and latency). Consequently, the proposed BHC architecture, integrated with a least-significant-digit-parallel multiplier, is 1.42 times faster and utilizes 1.80 times lower FPGA slices when compared to the most recent BHC accelerator architectures.