Published in

EDP Sciences, Astronomy & Astrophysics, (663), p. A54, 2022

DOI: 10.1051/0004-6361/202141704

Links

Tools

Export citation

Search in Google Scholar

First detection of AlF line emission towards M-type AGB stars

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The nucleosynthesis production of fluorine (F) is still a matter of debate. Asymptotic giant branch (AGB) stars are one of the main candidates for F production. However, their contribution to the total F budget is not fully known due to the lack of observations. In this paper, we report the detection of aluminium monofluoride (AlF) line emission, one of the two main carriers of F in the gas-phase in the outflow of evolved stars, towards five nearby oxygen-rich (M-type) AGB stars. We studied the Atacama large millimetre/sub-millimetre array (ALMA) observations of AlF (v = 0, J = 4—3, 9–8, 10–9, and 15–14) and (v = 1, J = 7–6) line emission towards o Ceti, and (v = 0, J = 7–6 and 15–14) lines towards R Leo. We also report a tentative detection of AlF (v = 0, J = 7–6) line in IK Tau, (v = 0, J = 15–14) line towards R Dor, and (v = 0, J = 7–6 and J = 15–14) lines in W Hya. From spatially resolved observations, we estimated the AlF emitting region with a radius ~11R for o Ceti and ~9R for R Leo. From population diagram analysis, we report the AlF column densities of ~5.8 × 1015 cm−2 and ~3 × 1015 cm−2 for o Ceti and R Leo, respectively, within these regions. For o Ceti, we used the C18O (v = 0, J = 3–2) observations to estimate the H2 column density of the emitting region. We found a fractional abundance of fAIF/H2 ~ (2.5 ± 1.7) × 10−8. This gives a lower limit on the F budget in o Ceti and is compatible with the solar F budget fF/H2 = (5 ± 2) × 10−8. For R Leo, a fractional abundance fAIF/H2 = (1.2 ± 0.5) × 10−8 is estimated. For other sources, we cannot precisely determine the emitting region based on the available data. Assuming an emitting region with a radius of ~11R and the rotational temperatures derived for o Ceti and R Leo, we crudely approximated the AlF column density to be ~(1.2−1.5) × 1015 cm−2 in W Hya, ~(2.5−3.0) × 1014 cm−2 in R Dor, and ~(0.6−1.0) × 1016 cm−2 in IK Tau. These result in fractional abundances within a range of fAIF/H2 ~ (0.1 − 4) × 10−8 in W Hya, R Dor, and IK Tau.