Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, Molecular Human Reproduction, 4(28), 2022

DOI: 10.1093/molehr/gaac011

Links

Tools

Export citation

Search in Google Scholar

On the origins and fate of chromosomal abnormalities in human preimplantation embryos: an unsolved riddle

Journal article published in 2022 by Marius Regin ORCID, Claudia Spits ORCID, Karen Sermon ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract About 8 out of 10 human embryos obtained in vitro harbour chromosomal abnormalities of either meiotic or mitotic origin. Abnormalities of mitotic origin lead to chromosomal mosaicism, a phenomenon that has sparked much debate lately as it confounds results obtained through preimplantation genetic testing for aneuploidy (PGT-A). PGT-A in itself is still highly debated, not only on the modalities of its execution but also on whether it should be offered to patients at all. We will focus on post-zygotic chromosomal abnormalities leading to mosaicism. First, we will summarize what is known about the rates of chromosomal abnormalities at different developmental stages. Next, based on the current understanding of the origin and cellular consequences of chromosomal abnormalities, which is largely based on studies on cancer cells and model organisms, we will offer a number of hypotheses on which mechanisms may be at work in early human development. Finally, and very briefly, we will touch upon the impact our current knowledge has on the practice of PGT-A. What is the level of abnormal cells that an embryo can tolerate before it loses its potential for full development? And is blastocyst biopsy as harmless as it seems?