Published in

Humana Press, Methods in Molecular Biology, p. 49-69, 2022

DOI: 10.1007/978-1-0716-1990-2_3

Links

Tools

Export citation

Search in Google Scholar

Live Imaging of RNA Transport and Translation in Xenopus Retinal Axons

Book chapter published in 2022 by Julie Qiaojin Lin ORCID, Jean-Michel Cioni
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractIn neurons, specific mRNAs are transported into axons, where their local translation supports essential cellular functions. Over the years, our knowledge of the molecular mechanisms underlying axonal mRNA translation has rapidly expanded. However, tools to study mRNA localization and translation in real time with high spatial precision were not available until recently. Here, we present a live imaging approach to examine axonal mRNA trafficking and translation simultaneously in Xenopus retinal ganglion cells (RGCs), using in vitro synthesized fluorescently labeled mRNAs coupled with a genetically encoded protein tagging system to visualize synthesizing peptides at single-molecule resolution. We further describe the process of image analysis in detail, thus providing a methodology that can be used to investigate new research questions in the field.