Anatomical and functional studies of central relaxin-3/RXFP3 systems suggest they constitute an ascending arousal network. For example, relaxin-3 knockout mice display circadian hypoactivity compared to wild type littermate controls. In studies to explore the effect of chronic RXFP3 activation on behaviour, we engineered a lentiviral construct to constitutively secrete the RXFP3 agonist, R3/I5, and express a green fluorescent protein (GFP) marker in transduced cells. Intracerebroventricular injection of the lenti-R3/I5-GFP virus (~10^8 genomic copies in 2 μl) in adult C57BL/6J mice resulted in GFP expression within cells of the ventricle walls and choroid plexus over a period of 1-4 weeks, suggesting likely chronic R3/I5 secretion and RXFP3 activation in brain regions proximal to the ventricular system. Subsequent testing in automated locomotor cells on day 8 and 9 post-injection revealed that lenti-R3/I5-GFP treated mice displayed prolonged, elevated locomotor activity (~18% higher over the last 15 min on day 8, and over the entire 30 min test on day 9) compared to mice injected with a control lenti-GFP virus, which habituated normally to the novel environment (n=18/12 respectively, p