Published in

Optica, Optics Express, 10(30), p. 16712, 2022

DOI: 10.1364/oe.456781

Links

Tools

Export citation

Search in Google Scholar

Synthesis of near-diffraction-free orbital-angular-momentum space-time wave packets having a controllable group velocity using a frequency comb

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Novel forms of light beams carrying orbital angular momentum (OAM) have recently gained interest, especially due to some of their intriguing propagation features. Here, we experimentally demonstrate the generation of near-diffraction-free two-dimensional (2D) space-time (ST) OAM wave packets (ℓ = +1, +2, or +3) with variable group velocities in free space by coherently combining multiple frequency comb lines, each carrying a unique Bessel mode. Introducing a controllable specific correlation between temporal frequencies and spatial frequencies of these Bessel modes, we experimentally generate and detect near-diffraction-free OAM wave packets with high mode purities (>86%). Moreover, the group velocity can be controlled from 0.9933c to 1.0069c (c is the speed of light in vacuum). These ST OAM wave packets might find applications in imaging, nonlinear optics, and optical communications. In addition, our approach might also provide some insights for generating other interesting ST beams.