Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Antioxidants, 5(11), p. 820, 2022

DOI: 10.3390/antiox11050820

Links

Tools

Export citation

Search in Google Scholar

Antioxidant Metabolism Underlies Different Metabolic Strategies for Primary Root Growth Maintenance under Water Stress in Cotton and Maize

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The divergence of metabolic responses to water stress in the elongation zone of cotton and maize primary roots was investigated by establishing water-deficit conditions that generated steady root elongation at equivalent tissue water potentials. In water-stressed cotton roots, cell elongation was maintained in the apical 3 mm but was progressively inhibited with further displacement from the apex. These responses are similar to previous findings in maize, providing the foundation for comparisons of metabolic responses in regions of growth maintenance and inhibition between the species. Metabolomics analyses showed region-specific and species-specific changes in metabolite abundance in response to water stress, revealing both conserved responses including osmolyte accumulation, and key differences in antioxidative and sulfur metabolism. Quantitative assessment showed contrasting glutathione responses in the root elongation zone between the species, with glutathione levels declining in cotton as stress duration progressed, whereas in maize, glutathione levels remained elevated. Despite the lesser glutathione response in cotton, hydrogen peroxide levels were low in water-stressed cotton compared with maize roots and were associated with higher catalase, ascorbate peroxidase, and superoxide dismutase activities in cotton. The results indicate alternative metabolic strategies underlying the responses of primary root growth to water stress between cotton and maize.