Published in

MDPI, International Journal of Molecular Sciences, 9(23), p. 4774, 2022

DOI: 10.3390/ijms23094774

Links

Tools

Export citation

Search in Google Scholar

Electron Transfer in a Bio-Photoelectrode Based on Photosystem I Multilayer Immobilized on the Conducting Glass

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

A film of ~40 layers of partially oriented photosystem I (PSI) complexes isolated from the red alga Cyanidioschyzon merolae formed on the conducting glass through electrodeposition was investigated by time-resolved absorption spectroscopy and chronoamperometry. The experiments were performed at a range of electric potentials applied to the film and at different compositions of electrolyte solution being in contact with the film. The amount of immobilized proteins supporting light-induced charge separation (active PSI) ranged from ~10%, in the absence of any reducing agents (redox compounds or low potential), to ~20% when ascorbate and 2,6-dichlorophenolindophenol were added, and to ~35% when the high negative potential was additionally applied. The origin of the large fraction of permanently inactive PSI (65–90%) was unclear. Both reducing agents increased the subpopulation of active PSI complexes, with the neutral P700 primary electron donor, by reducing significant fractions of the photo-oxidized P700 species. The efficiencies of light-induced charge separation in the PSI film (10–35%) did not translate into an equally effective generation of photocurrent, whose internal quantum efficiency reached the maximal value of 0.47% at the lowest potentials. This mismatch indicates that the vast majority of the charge-separated states in multilayered PSI complexes underwent charge recombination.