Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Remote Sensing, 9(14), p. 2074, 2022

DOI: 10.3390/rs14092074

Links

Tools

Export citation

Search in Google Scholar

A General Spline-Based Method for Centerline Extraction from Different Segmented Road Maps in Remote Sensing Imagery

Journal article published in 2022 by Fanghong Xiao, Ling Tong ORCID, Yuxia Li, Shiyu Luo, Jón Atli Benediktsson ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Road centerline extraction is the foundation for integrating the segmented road map from a remote sensing image into a geographic information system (GIS) database. Considering that existing approaches tend to have a decline in performance for centerline and junction extraction when segmented road structures are irregular, this paper proposes a novel method which models the road network as a sequence of connected spline curves. Based on this motivation, the ratio of cross operators is firstly proposed to detect direction and width features of roads. Then, road pixels are divided into different clusters by local features using three perceptual grouping principles (i.e., direction grouping, proximity grouping, and continuity grouping). After applying a polynomial curve fitting on each cluster using pixel coordinates as observation data, the internal control points are determined according to the adjacency relation between clusters. Finally, road centerlines are generated based on spline fitting with constraints. We test our approach on segmented road maps which were obtained previously by machine recognition, or manual extraction from real optical (WorldView-2) and synthetic aperture radar (TerraSAR-X, Radarsat-2) images. Depending on the accuracy of the input segmented road maps, experimental results from our test data show that both the completeness and correctness of extracted centerlines are over 84% and 68% for optical and radar images, respectively. Furthermore, experiments also demonstrate the advantages of our proposed method, in contrast to existing methods for gaining smooth centerlines and precise junctions.