National Academy of Sciences, Proceedings of the National Academy of Sciences, 18(119), 2022
Full text: Download
Significance Messenger RNA (mRNA) splicing is fundamental to protein expression in mammals. Homozygous deletion of single protein components of the splicing machinery or its regulatory factors is embryonic lethal. However, through forward genetic screening in mice, we identified a viable hypomorphic missense mutation of the splicing regulator RNPS1. Homozygous mutant mice displayed altered immune cell development due to excessive tumor necrosis factor (TNF)–dependent immune cell apoptosis. Splicing was impaired in CD8 + T cells and hematopoietic stem cells from RNPS1 mutant mice. TNF knockout rescued hematopoiesis and dramatically reduced splicing defects in RNPS1 hematopoietic cells, demonstrating a surprising link between elevated TNF and defects in splicing caused by RNPS1 deficiency.