Published in

MDPI, Photonics, 5(9), p. 297, 2022

DOI: 10.3390/photonics9050297

Links

Tools

Export citation

Search in Google Scholar

Mode Coupling and Steady-State Distribution in Multimode Step-Index Organic Glass-Clad PMMA Fibers

Journal article published in 2022 by Svetislav Savović ORCID, Alexandar Djordjevich, Isidora Savović, Rui Min ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Mode coupling and power diffusion in multimode step-index (SI) organic glass-clad (OGC) PMMA fiber is examined in this study using the power flow equation (PFE). Using our previously proposed approach we determine the coupling coefficient D for this fiber. When compared to standard multimode SI PMMA fibers, the multimode SI OGC PMMA fiber has similar mode coupling strength. As a result, the fiber length required to achieve the steady-state distribution (SSD) in SI OGC PMMA fibers is similar to that required in standard SI PMMA fibers. We have confirmed that optical fibers with a plastic core show more intense mode coupling than those with a glass core, regardless of the cladding material. These findings could be valuable in communication and sensory systems that use multimode SI OGC PMMA fiber. In this work, we have demonstrated a successful employment of our previously proposed method for determination of the coupling coefficient D in multimode SI OGC PMMA fiber. This method has already been successfully employed in the previous research of mode coupling in multimode SI glass optical fibers, SI PMMA fibers and SI plastic-clad silica optical fibers.