Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, The Plant Cell, 8(34), p. 2833-2851, 2022

DOI: 10.1093/plcell/koac137

Links

Tools

Export citation

Search in Google Scholar

The transcription factor bZIP68 negatively regulates cold tolerance in maize

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Maize (Zea mays) originated in tropical areas and is thus susceptible to low temperatures, which pose a major threat to maize production. Our understanding of the molecular basis of cold tolerance in maize is limited. Here, we identified bZIP68, a basic leucine zipper (bZIP) transcription factor, as a negative regulator of cold tolerance in maize. Transcriptome analysis revealed that bZIP68 represses the cold-induced expression of DREB1 transcription factor genes. The stability and transcriptional activity of bZIP68 are controlled by its phosphorylation at the conserved Ser250 residue under cold stress. Furthermore, we demonstrated that the bZIP68 locus was a target of selection during early domestication. A 358-bp insertion/deletion (Indel-972) polymorphism in the bZIP68 promoter has a significant effect on the differential expression of bZIP68 between maize and its wild ancestor teosinte. This study thus uncovers an evolutionary cis-regulatory variant that could be used to improve cold tolerance in maize.