Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Scientific Reports, 1(12), 2022

DOI: 10.1038/s41598-022-11795-4

Links

Tools

Export citation

Search in Google Scholar

Characterisation of drug-resistant Mycobacterium tuberculosis mutations and transmission in Pakistan

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractTuberculosis, caused by Mycobacterium tuberculosis, is a high-burden disease in Pakistan, with multi-drug (MDR) and extensive-drug (XDR) resistance, complicating infection control. Whole genome sequencing (WGS) of M. tuberculosis is being used to infer lineages (strain-types), drug resistance mutations, and transmission patterns—all informing infection control and clinical decision making. Here we analyse WGS data on 535 M. tuberculosis isolates sourced across Pakistan between years 2003 and 2020, to understand the circulating strain-types and mutations related to 12 anti-TB drugs, as well as identify transmission clusters. Most isolates belonged to lineage 3 (n = 397; 74.2%) strain-types, and were MDR (n = 328; 61.3%) and (pre-)XDR (n = 113; 21.1%). By inferring close genomic relatedness between isolates (< 10-SNPs difference), there was evidence of M. tuberculosis transmission, with 55 clusters formed consisting of a total of 169 isolates. Three clusters consist of M. tuberculosis that are similar to isolates found outside of Pakistan. A genome-wide association analysis comparing ‘transmitted’ and ‘non-transmitted’ isolate groups, revealed the nusG gene as most significantly associated with a potential transmissible phenotype (P = 5.8 × 10–10). Overall, our study provides important insights into M. tuberculosis genetic diversity and transmission in Pakistan, including providing information on circulating drug resistance mutations for monitoring activities and clinical decision making.