Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Sustainability, 10(14), p. 5895, 2022

DOI: 10.3390/su14105895

Links

Tools

Export citation

Search in Google Scholar

Assessment of Strength and Durability Properties of Self-Compacting Concrete Comprising Alccofine

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Self-Compacting Concrete (SCC), a high-performance concrete with exceptional fluidity and cohesiveness, has gained popularity recently. The consolidation qualities and durability demands of this material require the application of Supplemental Cementitious Materials (SCMs). Alccofine is a type of additive material that has the potential to increase SCC characteristics while lowering the environmental effect of Portland cement manufacturing. In light of these facts, this study focused on the fresh, strength, and durability properties of SCC by partially replacing cement with varying percentages of alccofine such as 0%, 10%, 20%, 30%, 40%, 50%, and 60%. The fresh properties are examined using slump flow, T50, V-funnel, and L-box as per ISO 1920-13. The mechanical and durability properties were investigated, such as compressive strength test, modulus of rupture, Young’s modulus of concrete and water absorption, sorptivity, sulphate resistance, and acid resistance, and were compared with conventional SCC. Results indicated that the replacement of 30% alccofine exhibited superior performance in both the strength and durability properties compared to other mixes.