Published in

Oxford University Press, Monthly Notices of the Royal Astronomical Society, 3(514), p. 4111-4119, 2022

DOI: 10.1093/mnras/stac1363

Links

Tools

Export citation

Search in Google Scholar

Slow convection and fast rotation in crystallization-driven white dwarf dynamos

Journal article published in 2022 by Sivan Ginzburg, Jim Fuller ORCID, Adela Kawka ORCID, Ilaria Caiazzo ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT It has been recently suggested that white dwarfs generate magnetic fields in a process analogous to the Earth. The crystallization of the core creates a compositional inversion that drives convection, and combined with rotation, this can sustain a magnetic dynamo. We reanalyse the dynamo mechanism, arising from the slow crystallization of the core, and find convective turnover times tconv of weeks to months – longer by orders of magnitude than previously thought. With white dwarf spin periods P ≪ tconv, crystallization-driven dynamos are almost always in the fast-rotating regime, where the magnetic field B is at least in equipartition with the convective motion and is possibly further enhanced by a factor of B ∝ (tconv/P)1/2, depending on the assumed dynamo scaling law. We track the growth of the crystallized core using mesa and compute the magnetic field B(Teff) as a function of the white dwarf’s effective temperature Teff. We compare this prediction with observations and show that crystallization-driven dynamos can explain some – but not all – of the ∼MG magnetic fields measured for single white dwarfs, as well as the stronger fields measured for white dwarfs in cataclysmic variables, which were spun up by mass accretion to short P. Our B(Teff) curves might also explain the clustering of white dwarfs with Balmer emission lines around Teff ≈ 7500 K.