Published in

MDPI, Antibiotics, 5(11), p. 662, 2022

DOI: 10.3390/antibiotics11050662

Links

Tools

Export citation

Search in Google Scholar

Qualitative Risk Assessment for Antimicrobial Resistance among Humans from Salmon Fillet Consumption Due to the High Use of Antibiotics against Bacterial Infections in Farmed Salmon

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background: Worldwide, aquaculture is considered as a hotspot environment for antimicrobial resistance (AMR) due to the intense use of antibiotics in its productive systems. Chile is the second largest producer of farmed salmon worldwide, and tons of antibiotics are used to control bacterial diseases, such as Salmon Rickettsial Syndrome (SRS) and Bacterial Kidney Disease (BKD). However, studies determining the risk of consuming salmon fillets that have been treated with antibiotics during the salmon production are limited. Consulting leading experts in the field could provide a knowledge base to identify and address this question and research gaps. Methods: Multisectoral risk perception of AMR through salmon fillet consumption was evaluated by eliciting expert data obtained through discussions during a workshop and from questionnaires given to experts from academia (n = 15, 63%), the public sector (n = 5, 21%), and the salmon industry (n = 4, 17%). Results: The qualitative risk analysis suggested an overall ‘low’ probability of AMR acquisition by consumption of salmon fillet that had been treated during the production cycle. The risk perception varied slightly between production stages in freshwater and seawater. In consensus with all sectors, this overall ‘low’, but existing, risk was probably associated with bacterial infections and the use of antibiotics. Conclusions: As it is essential to reduce the use of antibiotics in the Chilean salmon industry, this intersectoral approach and consensual results could favor effective implementation of targeted initiatives for the control and prevention of major bacterial diseases.