Published in

American Association for Cancer Research, Clinical Cancer Research, 2024

DOI: 10.1158/1078-0432.ccr-23-3841

Links

Tools

Export citation

Search in Google Scholar

Mesothelin CAR T-cells secreting anti-FAP/anti-CD3 molecules efficiently target pancreatic adenocarcinoma and its stroma

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Purpose: Targeting solid tumors with CAR T-cells remains challenging due to heterogenous target antigen expression, antigen escape, and the immunosuppressive tumor microenvironment (TME). Pancreatic cancer is characterized by a thick stroma generated by cancer-associated fibroblasts (CAFs), which may contribute to the limited efficacy of mesothelin-directed CAR T-cells in early-phase clinical trials. To provide a more favorable TME for CAR T-cells to target pancreatic ductal adenocarcinoma (PDAC), we generated T-cells with an anti-mesothelin CAR and a secreted T-cell-engaging molecule (TEAM) that targets CAFs through fibroblast activation protein (FAP) and engages T-cells through CD3 (termed mesoFAP CAR-TEAM cells). Experimental design: Using a suite of in vitro, in vivo, and ex vivo patient-derived models containing cancer cells and CAFs, we examined the ability of mesoFAP CAR-TEAM cells to target PDAC cells and CAFs within the TME. We developed and used patient-derived ex vivo models including patient-derived organoids with patient-matched CAFs and patient-derived organotypic tumor spheroids (PDOTS). Results: We demonstrated specific and significant binding of the TEAM to its respective antigens (CD3 and FAP) when released from mesothelin-targeting CAR T cells, leading to T cell activation and cytotoxicity of the target cell. MesoFAP CAR-TEAM cells were superior in eliminating PDAC and CAFs compared to T cells engineered to target either antigen alone in our ex-vivo patient-derived models and in mouse models of PDAC with primary or metastatic liver tumors. Conclusions: CAR-TEAM cells enable modification of tumor stroma, leading to increased elimination of PDAC tumors. This approach represents a promising treatment option for pancreatic cancer.