Dissemin is shutting down on January 1st, 2025

Published in

JMIR Publications, JMIR Public Health and Surveillance, 5(8), p. e31800, 2022

DOI: 10.2196/31800

Links

Tools

Export citation

Search in Google Scholar

Exploring the Risk of Suicide in Real Time on Spanish Twitter: Observational Study

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background Social media is now a common context wherein people express their feelings in real time. These platforms are increasingly showing their potential to detect the mental health status of the population. Suicide prevention is a global health priority and efforts toward early detection are starting to develop, although there is a need for more robust research. Objective We aimed to explore the emotional content of Twitter posts in Spanish and their relationships with severity of the risk of suicide at the time of writing the tweet. Methods Tweets containing a specific lexicon relating to suicide were filtered through Twitter's public application programming interface. Expert psychologists were trained to independently evaluate these tweets. Each tweet was evaluated by 3 experts. Tweets were filtered by experts according to their relevance to the risk of suicide. In the tweets, the experts evaluated: (1) the severity of the general risk of suicide and the risk of suicide at the time of writing the tweet (2) the emotional valence and intensity of 5 basic emotions; (3) relevant personality traits; and (4) other relevant risk variables such as helplessness, desire to escape, perceived social support, and intensity of suicidal ideation. Correlation and multivariate analyses were performed. Results Of 2509 tweets, 8.61% (n=216) were considered to indicate suicidality by most experts. Severity of the risk of suicide at the time was correlated with sadness (ρ=0.266; P<.001), joy (ρ=–0.234; P=.001), general risk (ρ=0.908; P<.001), and intensity of suicidal ideation (ρ=0.766; P<.001). The severity of risk at the time of the tweet was significantly higher in people who expressed feelings of defeat and rejection (P=.003), a desire to escape (P<.001), a lack of social support (P=.03), helplessness (P=.001), and daily recurrent thoughts (P=.007). In the multivariate analysis, the intensity of suicide ideation was a predictor for the severity of suicidal risk at the time (β=0.311; P=.001), as well as being a predictor for fear (β=–0.009; P=.01) and emotional valence (β=0.007; P=.009). The model explained 75% of the variance. Conclusions These findings suggest that it is possible to identify emotional content and other risk factors in suicidal tweets with a Spanish sample. Emotional analysis and, in particular, the detection of emotional variations may be key for real-time suicide prevention through social media.