Dissemin is shutting down on January 1st, 2025

Published in

American Institute of Physics, The Journal of Chemical Physics, 17(157), p. 174901, 2022

DOI: 10.1063/5.0086533

Links

Tools

Export citation

Search in Google Scholar

Microrheology of a thermosensitive gelling polymer for cell culture

Journal article published in 2022 by Stefano Buzzaccaro ORCID, Vincenzo Ruzzi ORCID, Tommaso Faleo ORCID, Roberto Piazza ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

We investigate the rheo-mechanical properties of Mebiol Gel®, a thermosensitive gel-forming polymer extensively used as a medium for cellular culture, using passive microrheology made either by standard dynamic light scattering or by photon correlation imaging. In the dilute limit, Mebiol displays a Newtonian behavior with an effective viscosity that decreases with temperature, consistent with a peculiar aggregation mechanism characterized by an increase of the molecular weight with a simultaneous reduction of the aggregate size. By increasing concentration and approaching gelation, both the storage and loss moduli show a nonmonotonic dependence with temperature, with a pronounced maximum around T m ≃ 28–30 °C, the value above which, in the dilute limit, the individual Mebiol chains are fully compacted. Such a distinctive trend of the elastic and viscous properties persists within the gel, which, therefore, becomes “softer” above T m. Although when temperature changes are performed adiabatically, the transition from the fluid to the gel phase takes place without any apparent discontinuity, a rapid T-jump leads to the formation of a hard gel at a concentration where a low heating rate conversely yields a fluid phase. This is a visible manifestation of the nonequilibrium nature of these physical gels.