Published in

MDPI, Coatings, 5(12), p. 702, 2022

DOI: 10.3390/coatings12050702

Links

Tools

Export citation

Search in Google Scholar

Physicochemical and Biological Evaluation of Chitosan-Coated Magnesium-Doped Hydroxyapatite Composite Layers Obtained by Vacuum Deposition

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In the present work, the effectiveness of vacuum deposition technique for obtaining composite thin films based on chitosan-coated magnesium-doped hydroxyapatite Ca10−xMgx(PO4)6 (OH)2 with xMg = 0.025 (MgHApCh) was proved for the first time. The prepared samples were exposed to three doses (0, 3, and 6 Gy) of gamma irradiation. The MgHApCh composite thin films nonirradiated and irradiated were evaluated by scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) studies. The biological evaluation of the samples was also presented. All the results obtained from this study showed that the vacuum deposition method allowed for obtaining uniform and homogeneous layers. Fine cracks were observed on the MgHApCh composite thin films’ surface after exposure to a 6 Gy irradiation dose. Additionally, after gamma irradiation, a decrease in Ca, P, and Mg content was noticed. The MgHApCh composite thin films with doses of 0 and 3 Gy of gamma irradiation showed a cellular viability similar to that of the control. Samples with 6 Gy doses of gamma irradiation did not cause significantly higher fibroblast cell death than the control (p > 0.05). On the other hand, the homogeneous distribution of pores that appeared on the surface of coatings after 6 Gy doses of gamma irradiation did not prevent the adhesion of fibroblast cells and their spread on the coatings. In conclusion, we could say that the thin films could be suitable both for use in bone implants and for other orthopedic and dentistry applications.