Dissemin is shutting down on January 1st, 2025

Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 21(119), 2022

DOI: 10.1073/pnas.2200713119

Links

Tools

Export citation

Search in Google Scholar

Long-term experimental evolution decouples size and production costs in Escherichia coli

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance Populations of larger organisms should be more efficient in their resource use, but grow more slowly, than populations of smaller organisms. The relations between size, metabolism, and demography form the bedrock of metabolic theory, but most empirical tests have been correlative and indirect. Experimental lineages of Escherichia coli that evolved to make larger cells provide a unique opportunity to test how size, metabolism, and demography covary. Despite the larger cells having a relatively slower metabolism, they grow faster than smaller cells. They achieve this growth rate advantage by reducing the relative costs of producing their larger cells. That evolution can decouple the costs of production from size challenges a fundamental assumption about the connections between physiology and ecology.