Published in

MDPI, Fermentation, 5(8), p. 242, 2022

DOI: 10.3390/fermentation8050242

Links

Tools

Export citation

Search in Google Scholar

Impact of Oil Sources on In Vitro Fermentation, Microbes, Greenhouse Gas, and Fatty Acid Profile in the Rumen

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

This study estimated the effects of oil sources on fermentation characteristics, greenhouse gas, microbial diversity, and biohydrogenation of fatty acids in the rumen. In vitro ruminal incubation was performed with 7 mg of oil source, 15 mL rumen buffer, and 150 mg of synthetic diet at 39 °C for 0, 3, 6, 12, and 24 h. Oil sources consisted of corn oil (CO; linoleic acid (C18:2n-6)), linseed oil (LSO; linolenic acid (C18:3n-3)), or Ca-salts (protected C18:2n-6). The ruminal gas was collected for CH4 and CO2 analysis. Incubated rumen buffer was sub-sampled for the analysis of microbial quantification, fermentation characteristics, and fatty acid profiles. The results showed that Ca-salt increased acetate (p = 0.013), while CO increased propionate (p = 0.007). Fibrobacter succinogenes, Ruminococcus flavefaciens, and R. albus increased (p < 0.05) with Ca-salt after 12 h of incubation, while Streptococcus bovis increased (p < 0.05) by LSO. The CO and Ca-salt resulted in the highest C18:2n-6 (p = 0.002), while LSO resulted in the highest C18:3n-3 (p = 0.001). The Ca-salt had the lowest C18:0 (p = 0.002), but the highest C18:1cis-9 (p = 0.004). In conclusion, Ca-salt supplementation resisted biohydrogenation to some extent, decreased methanogenic archaea and protozoa, and exerted less toxic effects on fibrolytic bacteria.