Published in

American Association for the Advancement of Science, Science Advances, 21(8), 2022

DOI: 10.1126/sciadv.abj9493

Links

Tools

Export citation

Search in Google Scholar

Real-space observation of fluctuating antiferromagnetic domains

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Magnetic domains play a fundamental role in physics of magnetism and its technological applications. Dynamics of antiferromagnetic domains is poorly understood, although antiferromagnets are expected to be extensively used in future electronic devices wherein it determines the stability and operational speed. Dynamics of antiferromagnets also features prominently in the studies of topological quantum matter. Real-space imaging of fluctuating antiferromagnetic domains is therefore highly desired but has never been demonstrated. We use coherent x-ray diffraction to obtain videos of fluctuating micrometer-scale antiferromagnetic domains in Ni 2 MnTeO 6 on time scales from 10 −1 to 10 3 s. In the collinear phase, thermally activated domain wall motion is observed in the vicinity of the Néel temperature. Unexpectedly, the fluctuations persist through the full range of the higher-temperature helical phase. These observations illustrate the high potential significance of the dynamic domain imaging in phase transition studies and in magnetic device research.