Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Antioxidants, 6(11), p. 1099, 2022

DOI: 10.3390/antiox11061099

Links

Tools

Export citation

Search in Google Scholar

Antioxidative Effects of Standardized Aronia melanocarpa Extract on Reproductive and Metabolic Disturbances in a Rat Model of Polycystic Ovary Syndrome

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Polycystic ovary syndrome (PCOS) represents the most common endocrinopathy among childbearing-age women, with oxidative stress (OS) underlying its etiopathogenesis. Metformin (MET) represents a frequently used agent in PCOS. However, weak results encourage alternative treatments. We aimed to investigate isolated and synergistic effects of Standardized Aronia melanocarpa extract (SEA) and MET for alleviating reproductive and metabolic PCOS abnormalities. PCOS induction was followed by 28-day treatment with MET, SAE, or MET + SEA. Bodyweight (BW), cyclicity, histological, and ultrasonographical ovarian analyses were performed. Hormonal, glycemic, and lipid profiles were accessed, as well as systemic and ovarian oxidative status; BW, cyclicity, ovarian histomorphology, ovarian volume, testosterone and progesterone levels, as well as LDL, triglycerides, and total cholesterol levels were aggravated after PCOS-induction and improved after MET, SEA, and MET + SEA treatment. MET + SEA had the greatest impact on glycoregulation. Alterations in OS parameters (TBARS, O2−, H2O2, catalase, superoxide dismutase, and reduced glutathione) could be responsible for observed differences; (4) Conclusions: Our findings confirmed that SAE alone or along with MET was capable of ameliorating reproductive and metabolic disturbances in the PCOS rat model, with the restoration of OS parameters. SAE alone did not alter the protective effects of MET in PCOS.