Published in

Springer, Journal of Nanoparticle Research, 6(24), 2022

DOI: 10.1007/s11051-022-05492-6

Links

Tools

Export citation

Search in Google Scholar

Development of SiO2-coumarin fluorescent nanohybrid and its application for Cu(II) sensing in aqueous extracts of roadside soil

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractA SiO2-coumarin nanohybrid was investigated for its Cu(II) sensing performance in aqueous media, and in comparison with the Cu(II)-selective coumarin used alone. Fluorescence of both coumarin itself and the nanohybrid, λexem 435/481 nm, was selectively quenched by Cu(II) when tested against a range of multivalent cations. The nanohybrid had enhanced Cu(II) sensing properties when compared to the coumarin including (i) improved limit of detection from μM-level (0.48 μM) of Cu(II) using coumarin alone to nM-level (0.033 μM) and (ii) an extended linear detection range of 0.033–260 μM (0.0005–4.1 mg/mL) Cu(II) compared to 0.48–55 μM for the coumarin itself. The lower limit of detection and extended range were achieved with a smaller amount of coumarin and no traces of organic solvents used to help coumarin dissolution. Characterization suggested that under applied test conditions at pH = 5, SiO2 nanoparticles with negative surface charges adsorbed coumarin and then (when present) Cu(II) ions. The SiO2-coumarin nanohybrid was then applied for the determination of Cu(II) levels in aqueous soil extracts reaching over 94% recovery rates when used against the standard soil analysis method by inductively coupled plasma mass spectrometry (ICP-MS). Graphical Abstract