Published in

BioMed Central, Journal of Neuroinflammation, 1(19), 2022

DOI: 10.1186/s12974-022-02473-3

Links

Tools

Export citation

Search in Google Scholar

Systemic and central nervous system neuroinflammatory signatures of neuropsychiatric symptoms and related cognitive decline in older people

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Neuroinflammation may contribute to psychiatric symptoms in older people, in particular in the context of Alzheimer’s disease (AD). We sought to identify systemic and central nervous system (CNS) inflammatory alterations associated with neuropsychiatric symptoms (NPS); and to investigate their relationships with AD pathology and clinical disease progression. Methods We quantified a panel of 38 neuroinflammation and vascular injury markers in paired serum and cerebrospinal fluid (CSF) samples in a cohort of cognitively normal and impaired older subjects. We performed neuropsychiatric and cognitive evaluations and measured CSF biomarkers of AD pathology. Multivariate analysis determined serum and CSF neuroinflammatory alterations associated with NPS, considering cognitive status, AD pathology, and cognitive decline at follow-up visits. Results NPS were associated with distinct inflammatory profiles in serum, involving eotaxin-3, interleukin (IL)-6 and C-reactive protein (CRP); and in CSF, including soluble intracellular cell adhesion molecule-1 (sICAM-1), IL-8, 10-kDa interferon-γ-induced protein, and CRP. AD pathology interacted with CSF sICAM-1 in association with NPS. Presenting NPS was associated with subsequent cognitive decline which was mediated by CSF sICAM-1. Conclusions Distinct systemic and CNS inflammatory processes are involved in the pathophysiology of NPS in older people. Neuroinflammation may explain the link between NPS and more rapid clinical disease progression.