Dissemin is shutting down on January 1st, 2025

Published in

American Astronomical Society, Astrophysical Journal, 2(931), p. 97, 2022

DOI: 10.3847/1538-4357/ac69de

Links

Tools

Export citation

Search in Google Scholar

SILVERRUSH. XII. Intensity Mapping for Lyα Emission Extending over 100–1000 Comoving Kpc around z ∼ 2−7 LAEs with Subaru HSC-SSP and CHORUS Data

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract We conduct intensity mapping to probe for extended diffuse Lyα emission around Lyα emitters (LAEs) at z ∼2−7, exploiting very deep (∼26 mag at 5σ) and large-area (∼4.5 deg2) Subaru/Hyper Suprime-Cam narrowband (NB) images and large LAE catalogs consisting of a total of 1540 LAEs at z = 2.2, 3.3, 5.7, and 6.6 obtained by the HSC-SSP and CHORUS projects. We calculate the spatial correlations of these LAEs with ∼1–2 billion pixel flux values of the NB images, deriving the average Lyα surface brightness (SBLyα ) radial profiles around the LAEs. By carefully estimating systematics such as fluctuations of sky background and point-spread functions, we detect Lyα emission at 100–1000 comoving kpc around z = 3.3 and 5.7 LAEs at the 3.2σ and 3.7σ levels, respectively, and tentatively (=2.0σ) at z = 6.6. The emission is as diffuse as ∼10−20–10−19 erg s−1 cm−2 arcsec−2 and extended beyond the virial radius of a dark matter halo with a mass of 1011 M . While the observed SBLyα profiles have similar amplitudes at z = 2.2–6.6 within the uncertainties, the intrinsic SBLyα profiles (corrected for the cosmological dimming effect) increase toward high redshifts. This trend may be explained by increasing hydrogen gas density due to the evolution of the cosmic volume. Comparisons with theoretical models suggest that extended Lyα emission around an LAE is powered by resonantly scattered Lyα photons in the CGM and IGM that originate from the inner part of the LAE and/or neighboring galaxies around the LAE.