Published in

American Physiological Society, Journal of Applied Physiology, 2(92), p. 622-626, 2002

DOI: 10.1152/japplphysiol.00574.2001

Links

Tools

Export citation

Search in Google Scholar

Similar ventilation distribution in normal subjects prone and supine during tidal breathing

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Multiple-breath washout (MBW) tests, with end-expiratory lung volume at functional residual capacity (FRC) and 90% O2, 5% He, and 5% SF6as an inspired gas mixture, were performed in healthy volunteers in supine and prone postures. The semilog plot of MBW N2concentrations was evaluated in terms of its curvilinearity. The MBW N2normalized slope analysis yielded indexes of acinar and conductive ventilation heterogeneity (Verbanck S, Schuermans D, Van Muylem A, Paiva M, Noppen M, and Vincken W. J App Physiol 83: 1907–1916, 1997). Also, the difference between SF6and He normalized phase III slopes was computed in the first MBW expiration. Only MBW tests with similar FRC in the prone and supine postures ( P > 0.1; n= 8) were considered. Prone and supine postures did not reveal any significant differences in curvilinearity, N2normalized slope-derived indexes of conductive or acinar ventilation heterogeneity, nor SF6-He normalized phase III slope difference in the first MBW expiration ( P > 0.1 for all). The absence of significant changes in any of the MBW indexes suggests that ventilation heterogeneity is similar in the supine and prone postures of normal subjects breathing near FRC.