Dissemin is shutting down on January 1st, 2025

Published in

American Association for Cancer Research, Clinical Cancer Research, 2024

DOI: 10.1158/1078-0432.ccr-23-2760

Links

Tools

Export citation

Search in Google Scholar

Memory/active T cell activation is associated with immunotherapeutic response in fumarate hydratase-deficient renal cell carcinoma

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Purpose: Fumarate hydratase-deficient renal cell carcinoma (FH-deficient RCC) is a rare and lethal subtype of kidney cancer. However, the optimal treatments and molecular correlates of benefits for FH-deficient RCC are currently lacking. Experimental Design: A total of 91 patients with FH-deficient RCC from 15 medical centers between 2009 and 2022 were enrolled in this study. Genomic and bulk RNA sequencing (RNA-seq) were performed on 88 and 45 untreated FH-deficient RCCs, respectively. Single-cell RNA-seq was performed to identify biomarkers for treatment response. Main outcomes included disease-free survival (DFS) for localized patients, objective response rate (ORR), progression-free survival (PFS), and overall survival (OS) for metastatic patients. Results: In the localized setting, we found that a cell cycle progression signature enabled to predict disease progression. In the metastatic setting, first-line immune checkpoint inhibitor plus tyrosine kinase inhibitor (ICI+TKI) combination therapy showed satisfactory safety and was associated with a higher ORR (43.2% vs. 5.6%), apparently superior PFS (median PFS: 17.3 vs. 9.6 months, P=0.016) and OS (median OS: not reached vs. 25.7 months, P=0.005) over TKI monotherapy. Bulk and single-cell RNA-seq data revealed an enrichment of memory and effect T cells in responders to ICI plus TKI combination therapy. Furthermore, we identified a signature of memory and effect T cells that was associated with the effectiveness of ICI plus TKI combination therapy. Conclusions: ICI plus TKI combination therapy may represent a promising treatment option for metastatic FH-deficient RCC. A memory/active T cell-derived signature is associated with the efficacy of ICI+TKI but necessitates further validation.