Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Materials, 11(15), p. 3883, 2022

DOI: 10.3390/ma15113883

Links

Tools

Export citation

Search in Google Scholar

Barrier Diamond-like Carbon Coatings on Polydimethylsiloxane Substrate

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The plasma modification of polydimethylsiloxane (PDMS) substrates is one way to change their surface geometry, which enables the formation of wrinkles. However, these changes are very often accompanied by the process of restoring the hydrophobic properties of the modified material. In this work, the RF PACVD device (radio frequency plasma-assisted chemical vapor deposition) was used, with which the plasma treatment of PDMS substrates was carried out in argon, nitrogen, oxygen, and methane atmospheres at variable negative biases ranging from 100 V to 500 V. The obtained results show the stability of contact angles for deionized water only in the case of surfaces modified by diamond-like carbon (DLC) coatings. The influence of the applied production conditions on the thickness (between 10 and 30 nm) and chemical structure (ID/IG between 0.41 and 0.8) of DLC coatings is discussed. In the case of plasma treatments with other gases introduced into the working chamber, the phenomenon of changing from hydrophilic to hydrophobic properties after the modification processes was observed. The presented results confirm the barrier nature of the DLC coatings produced on the PDMS substrate.