Published in

Nature Research, Communications Earth & Environment, 1(3), 2022

DOI: 10.1038/s43247-022-00462-1

Links

Tools

Export citation

Search in Google Scholar

Liquid-liquid phase separation reduces radiative absorption by aged black carbon aerosols

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractBlack carbon aerosols absorb radiation and their absorptive strength is influenced by particle mixing structures and coating compositions. Liquid-liquid phase separation can move black carbon to organic particle coatings which affects absorptive capacity, but it is unclear which conditions favour this redistribution. Here we combine field observations, laboratory experiments, and transmission electron microscopy to demonstrate that liquid-liquid phase separation redistributes black carbon from inorganic particle cores to organic coatings under a wide range of relative humidity. We find that the ratio of organic coating thickness to black carbon size influences the redistribution. When the ratio is lower than 0.12, over 90% of black carbon is inside inorganic salt cores. However, when the ratio exceeds 0.24, most black carbon is redistributed to organic coatings, due to a change in its affinity for inorganic and organic phases. Using an optical calculation model, we estimate that black carbon redistribution reduces the absorption enhancement effect by 28–34%. We suggest that climate models assuming a core-shell particle structure probably overestimate radiative absorption of black carbon aerosols by approximately 18%.