Published in

American Chemical Society, Environmental Science and Technology, 20(40), p. 6377-6383, 2006

DOI: 10.1021/es051228v

Links

Tools

Export citation

Search in Google Scholar

Intercomparison of Thermal and Optical Measurement Methods for Elemental Carbon and Black Carbon at an Urban Location

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Despite intensive efforts during the past 20 years, no generally accepted standard method exists to measure black carbon (BC) or elemental carbon (EC). Data on BC and EC concentrations are method specific and can differ widely (e.g. Schmid et al., 2001, ten Brink et al., 2004). In this study, a comprehensive set of methods (both optical and thermal) is compared. Measurements were performed under urban background conditions in Vienna, Austria, a city heavily impacted by diesel emissions. Filter and impactor samples were taken during 3 weeks in summer 2002 and analyzed for EC with thermal methods: a modified Cachier method (Cachier et al., 1989), a thermal-optical method (Schmid et al., 2001), and the VDI method (VDI, 1996); for BC with optical methods: a filter transmission method and the integrating sphere method (Hitzenberger et al., 1996); and for total carbon (TC) with a combustion method (Puxbaum and Rendl, 1983). The online methods aethalometer (Hansen et al., 1984) and the multiangle absorption photometer MAAP (Petzold et al., 2002) to measure BC were also used. The average values of BC and EC obtained with the methods agreed within their standard deviations. A conversion table was set up to allow comparisons between data measured elsewhere under urban background conditions (with similar source characteristics) with different instruments. An approach to estimate the absorption coefficient from attenuation data is derived so that existing records of aethalometer data in urban environments may be used to obtain also the absorption coefficients.