Published in

American Institute of Physics, Physics of Plasmas, 6(29), p. 062707, 2022

DOI: 10.1063/5.0087020

Links

Tools

Export citation

Search in Google Scholar

Neutron backscatter edges as a diagnostic of burn propagation

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

High gain in hotspot-ignition inertial confinement fusion (ICF) implosions requires the propagation of thermonuclear burn from a central hotspot to the surrounding cold dense fuel. As ICF experiments enter the burning plasma regime, diagnostic signatures of burn propagation must be identified. In previous work [A. J. Crilly et al., Phys. Plasmas 27(1), 012701 (2020)], it has been shown that the spectral shape of the neutron backscatter edges is sensitive to the dense fuel hydrodynamic conditions. The backscatter edges are prominent features in the ICF neutron spectrum produced by the 180° scattering of primary deuterium–tritium fusion neutrons from ions. In this work, synthetic neutron spectra from radiation-hydrodynamics simulations of burning ICF implosions are used to assess the backscatter edge analysis in a propagating burn regime. Significant changes to the edge's spectral shape are observed as the degree of burn increases, and a simplified analysis is developed to infer scatter-averaged fluid velocity and temperature. The backscatter analysis offers direct measurement of the increased dense fuel temperatures that result from burn propagation.