Dissemin is shutting down on January 1st, 2025

Published in

American Institute of Physics, AIP Advances, 6(12), p. 065010, 2022

DOI: 10.1063/5.0087207

Links

Tools

Export citation

Search in Google Scholar

The impact of strain on growth mode in chemical vapor deposited mono- and few-layer MoS<sub>2</sub>

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

-The development of high-quality chemical vapor-deposited mono- and few-layer MoS2 is of high relevance for future applications in functional devices. Consequently, a detailed understanding of the growth mode and the parameters affecting it is important. Here, we show for the case of mono- and few-layer MoS2 grown on Muscovite mica, how strain and temperature impact the growth mode. We show how misleading the determination of the number of MoS2 layers is, solely based on Raman spectroscopy due to the occurrence of strain and changes in the growth mode. A combination of atomic force microscopy, Raman spectroscopy, and ab initio calculations reveal that that the growth at 500 °C synthesis temperature exhibits a strained layer-by-layer growth of up to three mono-layers, whereas at 700 °C, a strain release occurs and layer-by-layer growth is confined to the first mono-layer only. We relate the occurrence of strain to the formation of gas bubbles below the MoS2 film, escaping the mica sheets during high temperature synthesis. Our analysis shows that mica substrates can be used to study strain in 2D materials without the need to apply external stress and that a detailed knowledge of the MoS2 morphology is necessary to correctly interpret the Raman results.