Published in

Nature Research, Nature Communications, 1(13), 2022

DOI: 10.1038/s41467-022-30918-z

Links

Tools

Export citation

Search in Google Scholar

Paramagnons and high-temperature superconductivity in a model family of cuprates

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractCuprate superconductors have the highest critical temperatures (Tc) at ambient pressure, yet a consensus on the superconducting mechanism remains to be established. Finding an empirical parameter that limits the highest reachable Tc can provide crucial insight into this outstanding problem. Here, in the first two Ruddlesden-Popper members of the model Hg-family of cuprates, which are chemically nearly identical and have the highest Tc among all cuprate families, we use inelastic photon scattering to reveal that the energy of magnetic fluctuations may play such a role. In particular, we observe the single-paramagnon spectra to be nearly identical between the two compounds, apart from an energy scale difference of ~30% which matches their difference in Tc. The empirical correlation between paramagnon energy and maximal Tc is further found to extend to other cuprate families with relatively high Tc’s, hinting at a fundamental connection between them.