Published in

MDPI, Applied Sciences, 12(12), p. 5843, 2022

DOI: 10.3390/app12125843

Links

Tools

Export citation

Search in Google Scholar

Transfer Learning Analysis for Subvisible Particle Flow Imaging of Pharmaceutical Formulations

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Subvisible particles are an ongoing problem in biotherapeutic injectable pharmaceutical formulations, and their identification is an important prerequisite for tracing them back to their source and optimizing the process. Flow imaging microscopy (FIM) is a favored imaging technique, mainly because of its ability to achieve rapid batch imaging of subvisible particles in solution with excellent imaging quality. This study used VGG16 after transfer learning to identify subvisible particle images acquired using FlowCam. We manually prepared standards for seven classes of particles, acquired the image information through FlowCam, and fed the images over 5 µm into VGG16 consisting of a convolutional base of VGG16 pre-trained with ImageNet data and a custom classifier for training. An accuracy of 97.51% was obtained for the test set data. The study also demonstrated that the recognition method using transfer learning outperforms machine learning methods based on morphological parameters in terms of accuracy, and has a significant training speed advantage over scratch-trained CNN. The combination of transfer learning and FIM images is expected to provide a general and accurate data-analysis method for identifying subvisible particles.