Published in

Oxford University Press, Monthly Notices of the Royal Astronomical Society, 4(514), p. 5024-5034, 2022

DOI: 10.1093/mnras/stac1571

Links

Tools

Export citation

Search in Google Scholar

Probing magnetar emission mechanisms with X-ray spectropolarimetry

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT This year, a new era of observations of compact objects in X-ray polarization is commencing. Among the key targets for the Imaging X-ray Polarimetry Explorer mission are the magnetars 4U 0142+61 and 1RXS J170849.0-400910. Here, we present detailed predictions of the expected polarization from these sources that incorporate realistic models of emission physics at the surface (gaseous or condensed), the temperature distribution on the surface, general relativity, quantum electrodynamics, and scattering in the magnetosphere, accounting for the broad-band spectral energy distribution from below 1 keV to nearly 100 keV. We find that either atmospheres or condensed surfaces can account for the emission at a few keV. In both cases, either a small hot polar cap or scattering is required to account for the emission at 5–10 keV and, above 10 keV, scattering by a hard population of electrons can account for the rising power in the hard X-rays observed in many magnetars in quiescence. Although these different scenarios result in very similar spectral energy distributions, they generate dramatically different polarization signatures from 2 to 8 keV, which is the range of sensitivity of the Imaging X-ray Polarimetry Explorer. Observations of these sources in X-ray polarization will therefore probe the emission from magnetars in an essentially new way.