Dissemin is shutting down on January 1st, 2025

Published in

American Institute of Physics, Applied Physics Letters, 23(120), p. 232404, 2022

DOI: 10.1063/5.0093949

Links

Tools

Export citation

Search in Google Scholar

A three-dimensional magnetic field sensor based on a single spin–orbit-torque device via domain nucleation

Journal article published in 2022 by Zhe Guo, Ruofan Li, Shuai Zhang, Yufeng Tian ORCID, Jeongmin Hong ORCID, Long You ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Detecting a three-dimensional (3D) magnetic field by a compact and simple structure or device has always been a challenging work. The recent discovery of 3D magnetic field sensing through the single spin–orbit torque device consisting of the Ta/CoFeB/MgO heterostructure, based on the domain wall motion, offers a revolutionary way to tackle this problem. Here, we demonstrate a 3D magnetic field sensor based on the W/CoFeB/MgO heterostructure via domain nucleation dominated magnetization reversal. In such a heterostructure, the in-plane (IP) and out-of-plane (OOP) magnetic field components drive the grains reversal with different manners, enabling the distinguishment of the contributions from IP and OOP components. The linear modulations of anomalous Hall resistance by x, y, and z components of magnetic fields have been obtained, respectively, with the same linear range of −20 to +20 Oe for each component. Typically, a higher linearity is realized in this work compared with the previous domain wall motion based sensor, which is a critical characteristic for the magnetic field sensor.