Published in

Nature Research, Nature Communications, 1(13), 2022

DOI: 10.1038/s41467-022-31006-y

Links

Tools

Export citation

Search in Google Scholar

Nickel(0)-catalyzed divergent reactions of silacyclobutanes with internal alkynes

Journal article published in 2022 by Xi-Chao Wang, Bo Li ORCID, Cheng-Wei Ju ORCID, Dongbing Zhao ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractTransition metal-catalyzed reactions of silacyclobutanes with a variety of π units have attracted much attention and become one of the most straightforward and efficient approaches to rapidly access structurally diverse organosilicon compounds. However, the reaction of silacyclobutanes with alkynes still suffers from some limitations: (1) internal alkynes remain challenging substrates; (2) expensive Pd- or Rh-based catalysts have been employed in all existing systems; (3) controlling chemodivergence has not yet been realized. Herein we realize Ni-catalyzed chemodivergent reactions of silacyclobutanes with alkynes. In comparison with the previous Pd or Rh catalytic systems, our Ni-catalytic system features: 1) complementary substrate scope; 2) ligand-controlled chemodivergence; 3) low cost. The ligand precisely dictates the pathway selectivity, leading to the divergent formation of (benzo)silacyclohexenes and allyl vinylsilanes. Moreover, we demonstrate that employment of a chiral phosphine ligand is capable of forming silicon-stereogenic allyl vinylsilanes in high yields and enantioselectivities. In addition, DFT calculation is performed to elucidate the origin of the switchable selectivities, which is mainly attributed to different ligand steric effects.