Published in

American Institute of Physics, The Journal of Chemical Physics, 23(156), p. 231102, 2022

DOI: 10.1063/5.0096625

Links

Tools

Export citation

Search in Google Scholar

Limits to scaling relations between adsorption energies?

Journal article published in 2022 by Sudarshan Vijay ORCID, Georg Kastlunger ORCID, Karen Chan ORCID, Jens K. Nørskov
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Linear scaling relations have led to an understanding of trends in catalytic activity and selectivity of many reactions in heterogeneous and electro-catalysis. However, linear scaling between the chemisorption energies of any two small molecule adsorbates is not guaranteed. A prominent example is the lack of scaling between the chemisorption energies of carbon and oxygen on transition metal surfaces. In this work, we show that this lack of scaling originates from different re-normalized adsorbate valence energies of lower-lying oxygen vs higher-lying carbon. We develop a model for chemisorption of small molecule adsorbates within the d-band model by combining a modified form of the Newns–Anderson hybridization energy with an effective orthogonalization term. We develop a general descriptor to a priori determine if two adsorbates are likely to scale with each other.