Published in

American Astronomical Society, Astrophysical Journal Letters, 2(932), p. L25, 2022

DOI: 10.3847/2041-8213/ac756f

Links

Tools

Export citation

Search in Google Scholar

GB6 J2113+1121: A Multiwavelength Flaring γ-Ray Blazar Temporally and Spatially Coincident with the Neutrino Event IceCube-191001A

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract A radio-emitting tidal disruption event (AT2019dsg) is proposed as a likely counterpart to the IceCube neutrino event IC 191001A. In this work, we have revisited the Fermi-LAT data in the direction of the neutrino and confirmed no signal at the site of AT2019dsg. Instead, at the edge of the 90% confidence level error region of this neutrino, there is a γ-ray transient source associated with the blazar GB6 J2113+1121. In 2019 May, GB6 J2113+1121 was undergoing a γ-ray flare that is unprecedented since the start of the Fermi-LAT operation, with a variability amplitude of about 20 fold. Similar violent flares of GB6 J2113+1121, unobserved before, have also been detected in the optical bands. Moreover, the blazar remained in a high-flux state in the infrared bands when IC 191001A arrived, though the blazar ‘s γ-ray and optical activities have temporarily ceased. Motivated by this spatial and temporal coincidence, we suggest that GB6 J2113+1121 is a candidate to be the counterpart to IC 191001A. The jet properties of GB6 J2113+1121 are investigated, which are found to be comparable with that of neutrino-emitting blazars (candidates). A specific analysis of archival IceCube data in this direction and future observations would put further constraints on the origin of the neutrino.