Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Cellular Signalling, 9(25), p. 1877-1886

DOI: 10.1016/j.cellsig.2013.05.005

Links

Tools

Export citation

Search in Google Scholar

Mammalian target of rapamycin-independent S6K1 and 4E-BP1 phosphorylation during contraction in rat skeletal muscle.

Journal article published in 2013 by Yang Liu, Didier Vertommen, Mark H. Rider, Yu-Chiang Lai ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Muscle protein synthesis rates decrease during contraction/exercise, but rapidly increase post-exercise. Previous studies mainly focused on signaling pathways that control protein synthesis during post-exercise recovery, such as mTOR and its downstream targets S6K1 and 4E-BP1. In this study, we investigated the effect of high-frequency electrical stimulation on the phosphorylation state of signaling components controlling protein synthesis in rat skeletal muscle. Electrical stimulation increased S6K1 Thr389 phosphorylation, which was unaffected by Torin1, a selective mTOR inhibitor, suggesting that S6K1 phosphorylation by contraction was mTOR-independent. Phosphorylation of eIF4B Ser422 was also increased during electrical stimulation, which was abrogated by inhibition of MEK/ERK/RSK1 signaling. Moreover, although phosphorylation of conventional mTOR sites in 4E-BP1 decreased during contraction, mTOR-independent phosphorylation was also apparent, which was associated with the release of 4E-BP1 from eIF4E. The results indicate mTOR-independent phosphorylation of S6K1 and 4E-BP1 and suggest MEK/ERK/RSK1-dependent phosphorylation of eIF4B during skeletal muscle contraction. These phosphorylation events would keep the translation initiation machinery "primed" in an active state so that protein synthesis could quickly resume post-exercise.